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Commutative Rank

Edmonds’ Problem

Given a polynomial matrix A(X1, . . . ,Xn) with linear entries

A(X) = A1X1 + A2X2 + · · ·+ AnXn Ai ∈ Cs×s

Find the rank of A(X) over C(X). Input parameter: n, s

• Has a randomised algorithm1

• Polytime algorithm known for some restrictive cases

• Deterministic Polytime Approximation Scheme (PTAS) known
due to Bläser, Jindal, Pandey (2016)

1can be solved using PIT oracle
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PTAS

ε - Approximation

Given a constant 0 < ε < 1 and input A(X) we can output a
number r s.t.

r ≤ crk(A) ≤ r [1 + ε]

in poly ((ns)1/ε) time
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Non-commutative Rank

Non-commutative Edmonds’ Problem

Given a polynomial matrix A(X1, . . . ,Xn) with linear entries

A(X) = A1X1 + A2X2 + · · ·+ AnXn Ai ∈ Cs×s

Where X are non-commutative

Find the rank of A(X) over C⟨(X)⟩ (non-commutative rank).



Motivation Parameterising Commutativity Preliminary Commutative rank approximation Conclusion

Non-commutative Rank

Non-commutative Edmonds’ Problem

Given a polynomial matrix A(X1, . . . ,Xn) with linear entries

A(X) = A1X1 + A2X2 + · · ·+ AnXn Ai ∈ Cs×s

Where X are non-commutative

Find the rank of A(X) over C⟨(X)⟩ (non-commutative rank).



Motivation Parameterising Commutativity Preliminary Commutative rank approximation Conclusion

Non-commutative Rank

Non-commutative Edmonds’ Problem

Given a polynomial matrix A(X1, . . . ,Xn) with linear entries

A(X) = A1X1 + A2X2 + · · ·+ AnXn Ai ∈ Cs×s

Where X are non-commutative

Find the rank of A(X) over C⟨(X)⟩ (non-commutative rank).



Motivation Parameterising Commutativity Preliminary Commutative rank approximation Conclusion

Non-commutative Rank

Non-commutative rank of a matrix in C⟨(X)⟩ is
Row rk : Max linear independent rows under left action

Column rk :

Inner rk : min r s.t. A can be written as product of n × r and r × n
matrix

• Max r s.t. it has r × r full non-commutative rank minor
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Non-commutative Rank

Example: x 0 0
0 y 0
0 0 z



Suppose x0
0

 a+

0y
0

 b +

00
z

 c = 0

=⇒

xayb
zc

 = 0 =⇒ a = b = c = 0

Hence has non-commutative rank 3
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Non-commutative Rank

Example:  0 x y
−x 0 1
−y −1 0



c3→c3−c2x−1y−−−−−−−−−→

 0 x 0
−x 0 1
−y −1 x−1y


c1→c1−c3x−−−−−−−→

 0 x 0
0 0 1

x−1yx − y −1 x−1y

 ∗∗∗−−→

 0 x 0
0 0 1

x−1yx − y 0 0


Hence has non-commutative rank 3

Note it’s commutative rank is 2
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Non-commutative Rank

Non-commutative Edmonds’ problem has polytime algorithm due
to

1. Garg, Gurvits, Oliveira and Wigderson 2015

2. Ivanyos, Qiao and Subrahmanyam 2015

3. Hamada and Hirai 2020
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Partially Commutative Partition

X := {X1,X2, . . . ,Xm,Xm+1, . . . ,X2m, . . . ,Xn}

X1,X2, . . . ,Xm︸ ︷︷ ︸
X1

∣∣∣,Xm+1, . . . ,X2m︸ ︷︷ ︸
X2

∣∣∣, . . . ,Xn

X:=X1⊔X2⊔ . . .⊔Xk

Xi commutes with Xj ⇐⇒ i ̸= j

Call this a k - Partially Commutative Partition
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Partially Commutative Partition

• For any k - Partially Commutative Partition, we have a
universal skew field, denoted by Uk (Klep et all. 2020)

• Hence we can define rank problem in this model

• Arvind, Chatterjee and Mukhopadhyay (2024) gave a

O((ns)k
k
) algorithm.

• We can design O(poly(nsk)) time approximation algorithm.
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Brief Timeline

IQS 15 : polynomial time algorithm for Non-commutative rank

BJP 16 : PTAS for commutative rank

BBJP 18 : Simplified [BJP 18]

CM 23 : Simplified [IQS 15]

• Based on the ideas from last two results: poly(kns)
approximation algorithm for Partially Commutative model
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ABP

Algebraic Branching Program

Product of t + 2 many s × s Matrix polynomials with linear entries:

[
r1 . . . rs

]  l
(1)
11 . . . l1s

(1)

...
ls1

(1) . . . lss
(1)

 . . .

 l
(t)
11 . . . l1s

(t)

...
ls1

(t) . . . lss
(t)


c1...
cs


ri , l

(i)
jk , ci are linear polynomials

• The polynomial computed by the ABP is the product
polynomial

• r is the length and s is the width of the ABP
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Polynomial Identity Testing

PIT for ABP

Given an ABP of length l , width s, check whether the polynomial
is 0 or not in poly(l , s, n) time

• if l is constant we can do the PIT efficiently

• Efficient PIT known for Non-commutative ABP due to Raz
and Shpilka (2004)
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Non commutative rank vs Commutative rank

Theorem 1

crk(A(X)) := max rank in⟨A1,A2, . . . ,An⟩

Which is the max rank obtained after substituting scaler values for
X

=⇒ crk(A(X)) = crk(A(X+ α))

Theorem 2 (informal)

ncrk(A) is max rank obtained when we substitute matrices for X
(and tensoring with Ai s)
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Non commutative rank vs Commutative rank

Theorem 3

crk(A) ≤ ncrk(A) ≤ 2crk(A)
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Non commutative rank vs Commutative rank

Theorem 3 (General statement)

For k ≤ t, if t - Partially commutative partition refines k -
Partially commutative partition

rkt(A) ≤ rkk(A) ≤ 2rkt(A)

Note it already gives an approximation algorithm with fixed error
- Output ncrk and we know it is close to rkk



Motivation Parameterising Commutativity Preliminary Commutative rank approximation Conclusion

Non commutative rank vs Commutative rank

Theorem 3 (General statement)

For k ≤ t, if t - Partially commutative partition refines k -
Partially commutative partition

rkt(A) ≤ rkk(A) ≤ 2rkt(A)

Note it already gives an approximation algorithm with fixed error
- Output ncrk and we know it is close to rkk



Motivation Parameterising Commutativity Preliminary Commutative rank approximation Conclusion

Non commutative rank vs Commutative rank

Theorem 3 (General statement)

For k ≤ t, if t - Partially commutative partition refines k -
Partially commutative partition

rkt(A) ≤ rkk(A) ≤ 2rkt(A)

Note it already gives an approximation algorithm with fixed error

- Output ncrk and we know it is close to rkk



Motivation Parameterising Commutativity Preliminary Commutative rank approximation Conclusion

Non commutative rank vs Commutative rank

Theorem 3 (General statement)

For k ≤ t, if t - Partially commutative partition refines k -
Partially commutative partition

rkt(A) ≤ rkk(A) ≤ 2rkt(A)

Note it already gives an approximation algorithm with fixed error
- Output ncrk and we know it is close to rkk



Motivation Parameterising Commutativity Preliminary Commutative rank approximation Conclusion

Basic structure of the Algorithm

The Algorithm will be greedy:

• Base case: Start with a 1× 1 minor

• Rank increment: given an assignment α ∈ Cn s.t.
crk(A(α)) = r , find β greedily s.t. crk(A(β)) > r

• Rank approximation: If no such β, output r
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Rank increment step

Given an assignment α for witness of rank r and ε, construct
polynomially many ABPs {fij} s.t. :

• fij has efficient PIT

• If one of the fij ̸=0, we can find β s.t. crk(A(β)) > r

• Else crk(A) ≤ r(1 + ε)
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Rank increment step - Analysis

WLOG assume

A(α) =

[
Ir 0
0 0

]

Hence

A(X+ α) =

[
r rows Ir − L(X) B(X)

n − r rows D(X) C (X)

]{{︸ ︷︷ ︸
r

︸ ︷︷ ︸
n-r

Where L(X),B(X),C (X) are matrix polynomials with constant
free linear entries.
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Rank increment step - Analysis

Suppose ∃i , j ∈ [n − r ] s.t.∣∣∣∣Ir − L(X) Bj(X)
Di (X) Cij(X)

∣∣∣∣ ̸= 0

⇐⇒ Cij(X)− Di (X)[I − L(X)]−1Bj(X) ̸= 0

⇐⇒ Cij − Di (
∑
t≥0

Lt)Bj) ̸= 0

⇐⇒ Cij − Di (
s∑

t=0

Lt)Bj ̸= 0
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Rank increment step - Analysis

crk(A) = r ⇐⇒ C −
s∑

t=0

BLtD = 0

⇐⇒ C ,BD,BLD, . . . ,BLsD = 0

Bläser, Jindal, Pandey 2016:

C ,BD, . . . ,BLk−2D = 0 =⇒ crk(A) ≤ r(1 +
1

k
)

Final Algorithm:

• Set k = 1
ε

• Check for C ,BD, . . . ,BLk−2D = 0. Output accordingly
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Rank increment step - Analysis

Suppose some BLtD ̸= 0 for X = γ,

• That means A(α+ tγ) has non-zero r + 1× r + 1 minor

• The determinant of that minor is r + 1 degree univariate
polynomial

• Assigning different r + 2 many values to t will assure one of
them makes the minor non-zero.
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High level idea for non-commutative case

For d ≥ s + 1, let Zi be d × d variable matrices

Ãd(Z1, . . . ,Zn)ds×ds := A1 ⊗ Z1 + · · ·+ An ⊗ Zn

Theorem 2 (formal)

ncrk(A(X)) = d × ncrk(Ãd(Z))
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High level idea for non-commutative case

Let (α1, . . . , αn) ∈ [Cd×d ]n be a witness assignment for rank r

Ãd(Z+ α) =

[
Ird − L B

D C

]
sd×sd

• Hence we have the series C ,BD, . . . ,BLsdD

• PIT is easy

• If first k many terms are 0

rd ≤ ncrk(Ãd) ≤ rd(1 +
1

k
)

=⇒ r ≤ ncrk(A) ≤ r(1 +
1

k
)
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Substitution in Partially Commutative model

Given
X = X1 ⊔ · · · ⊔ Xk

define

Ã(Z) :=
k∑

i=1

∑
x∈Xi

AX ⊗ Id1 ⊗ · · · ⊗ Idi−1
⊗ ZX ⊗ Idi+1

⊗ · · · ⊗ Idk
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Open areas

1. FPT algorithm for the rank problem in Partially commutative
model

2. Hardness in partially commutative model. Does that
generalise the extreme cases?

3. Efficiency for PC-rank computation for non-linear matrices
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