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NP Problems: Is Brute Force Optimal?

Given a word x , check for∨
e∈{0,1}n

M(x , e) = 1

M runs in m time

• Running time upper bound : 2nm (Brute force!)

• Improve to 2o(n)poly(m) possible?

• ETH says NO! (informally)
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Algebraic Circuits (Constant-free)

• Arithmetic Circuits are directed acyclic graphs.

• Each internal node: + or × gate.

• Each leaf: {1, 0,−1} or variables X

• Computes a polynomial in Z[X]

• Complexity Measure: # Edges in the circuit
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Tau-Complexity

Given a polynomial P(X) ∈ Z[X]

τ(P(X)) : Size of smallest circuit that computes P(X)

Examples

1. τ(22
k
) = Θ(k), τ(xn) = Θ(log n)

2. τ(n!) =?, τ(
n∏

i=1

(x + i)) =?

We believe these are ≥ Ω(n)
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Algebraic P (VP0)

Let {Pn} be a family of integer polynomials.

We say Pn ∈ VP0 if

• τ(Pn) = nO(1)

• deg(Pn) = nO(1)

Example

1. X1
n + X2

n + · · ·+ Xn
n

2. Sn,k(X1, . . . ,Xn) :=
∑

S⊆[n],|S|=k

∏
i∈S

Xi

3. Detn(X) :=
∑
σ∈Sn

sgn(σ)X1,σ1X2,σ2 . . .Xn,σn
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Exponential sum (VNP0)

Pn,m(X) =
∑

y∈{0,1}n
g(X, y)

Circuit size of g is m, g [X,Y] ∈ Z[X,Y].

• Note τ(Pn,m) ≤ O(2nm)

• τ(Pm,n) = 2o(n)poly(m) possible?

• Does τ -conjecture imply some lower bound?

• [Bürgisser’07] showed super-polynomial lowerbound on Pm,n

assuming τ -conjecture
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Main result

Conditional Optimal Lower Bound [BBDM’24]

Assuming τ -conjecture ∃ a polynomial family Pn,m(X) ∈ Z[X] of
exponential sum which requires 2Ω(n)poly(m) size circuit.
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w�
Lots of Bad things happenw�

n∏
i=1

(x + i) has easy coefficients

w�
It has poly(log n) size circuit
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n∑

k=0

Sn,n−k(1, . . . , n)x
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where
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∏
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Sn,nx
n + Sn,n−1x

n−1 + · · ·+ Sn,0

3 level

Sn,k := 1× · · ·×k + 2× · · ·×(k + 1) + . . .

2 level

1×. . .×k , 2×. . .×(k + 1), . . .

1 level

1, 2, . . . , n, xk

0 level

Linear Counting Hierarchy
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Linear Counting Hierarchy

Linear Counting Hierarchy

Given a complexity class K ,

we define Clin.K by
A ∈ Clin.K if there is some B ∈ K
and a linear function ℓ : N → N, ℓ(n) = O(n)
and some polynomial time computable function f : {0, 1}∗ → N
such that,

x ∈ A ⇐⇒ |{y ∈ {0, 1}ℓ(|x |) : ⟨x , y⟩ ∈ B}| > f (x).
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Linear Counting Hierarchy (CHlin)

Characterization of CHlin

(k + 1)th level of CHlin is Exponential sum of kth level

(k + 1)th level:
∑

y∈{0,1}ℓ(n)
Mn(y) where Mn is in kth level

Hence Exponential sum is EASY =⇒ CHlin collapses

=⇒
n∏

i=1

(x + i) is EASY
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Permanent

Given a variable matrix

X :=


X11 X12 . . . X1n

X21 X22 . . . X2n
...

. . .
...

Xn1 Xn2 . . . Xnn


n×n

Pern(X) :=
∑
σ∈Sn

X1,σ1X2,σ2 . . .Xn,σn



Motivation High level idea Towards Explicitness Conclusion

Permanent

Given a variable matrix

X :=


X11 X12 . . . X1n

X21 X22 . . . X2n
...

. . .
...

Xn1 Xn2 . . . Xnn


n×n

Pern(X) :=
∑
σ∈Sn

X1,σ1X2,σ2 . . .Xn,σn



Motivation High level idea Towards Explicitness Conclusion

Completeness of Permanent

Ryser formula: Pern can be written as Exponential sum (n, n2)

(Recall Exponential sum (n,m)=
∑

y∈{0,1}n
g(X, y) with τ(g) = m)

[Valiant 79]: Any Exponential sum (n,m) can be written as Per
of m4 ×m4 matrix with entries 1, 0,−1,X

• Super Polynomial lower bound on Exponential sum ⇐⇒
Super Polynomial lower bound on Per

• NOT true for Exponential lower bounds

• We gave 2n
1−ε

lower bound for Pern (Conditionally)
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Other Results

1. We achieved optimal lower bound from tau conjecture for
Parameterized Algebraic classes defined in [Bläser and Engles
18] (which are analogous to #W [t] classes)

2. We achieved completeness result for parameterized valiant
classes.
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Open Problems

1. Can we established conditional truly exponential (ie,
2Ω(n)poly(n)) lower bound for Pern? (Unconditional will be
better :))

2. Can we get Lower Bounds for NP from tau-conjecture? (We
don’t know even super-polynomial bound)
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