Conclusion O

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Exponential Lower-bounds via Exponential Sums

Somnath Bhattacharjee (Chennai Mathematical Institute)

Joint work with Markus Bläser (Saarland University), Pranjal Dutta (NUS), Saswata Mukherjee (NUS)

(ICALP 2024)

High level idea

Towards Explicitness

Conclusion 0

Motivation

High level idea

Towards Explicitness

Conclusion

Towards Explicitness

Conclusion O

NP Problems: Is Brute Force Optimal?

Towards Explicitness

Conclusion 0

NP Problems: Is Brute Force Optimal?

Given a word \boldsymbol{x} , check for

 $\bigvee_{e \in \{0,1\}^n} M(x, e) = 1$

Towards Explicitness

Conclusion 0

NP Problems: Is Brute Force Optimal?

Given a word \boldsymbol{x} , check for

 $\bigvee_{e \in \{0,1\}^n} M(x, e) = 1$

M runs in *m* time

High level idea

Towards Explicitness

Conclusion 0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

NP Problems: Is Brute Force Optimal?

Given a word \boldsymbol{x} , check for

$$\bigvee_{e \in \{0,1\}^n} M(x,e) = 1$$

M runs in *m* time

• Running time upper bound : 2ⁿm (Brute force!)

High level idea

Towards Explicitness

Conclusion 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

NP Problems: Is Brute Force Optimal?

Given a word \boldsymbol{x} , check for

$$\bigvee_{e \in \{0,1\}^n} M(x,e) = 1$$

M runs in *m* time

- Running time upper bound : 2ⁿm (Brute force!)
- Improve to 2^{o(n)} poly(m) possible?

High level idea

Towards Explicitness

Conclusion 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

NP Problems: Is Brute Force Optimal?

Given a word \boldsymbol{x} , check for

$$\bigvee_{e \in \{0,1\}^n} M(x,e) = 1$$

M runs in *m* time

- Running time upper bound : 2ⁿm (Brute force!)
- Improve to 2^{o(n)} poly(m) possible?
- ETH says NO! (informally)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Is Brute Force Optimal?

• Can we ask the same question in *algebraic setting*?

Conclusion O

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Is Brute Force Optimal?

- Can we ask the same question in *algebraic setting*?
- What is even the *Computational Model* in that setting?

Conclusion O

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Is Brute Force Optimal?

- Can we ask the same question in *algebraic setting*?
- What is even the *Computational Model* in that setting?
- Hence Algebraic Circuit enters the picture

Conclusion O

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Algebraic Circuits (Constant-free)

• Arithmetic Circuits are directed acyclic graphs.

Conclusion O

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Algebraic Circuits (Constant-free)

- Arithmetic Circuits are directed acyclic graphs.
- Each internal node: + or × gate.
- Each leaf: $\{1, 0, -1\}$ or variables X

Conclusion O

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Algebraic Circuits (Constant-free)

- Arithmetic Circuits are directed acyclic graphs.
- Each internal node: + or × gate.
- Each leaf: $\{1, 0, -1\}$ or variables X
- Computes a polynomial in Z[X]

Conclusion O

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Algebraic Circuits (Constant-free)

- Arithmetic Circuits are directed acyclic graphs.
- Each internal node: + or × gate.
- Each leaf: $\{1, 0, -1\}$ or variables X
- Computes a polynomial in Z[X]
- Complexity Measure: # Edges in the circuit

High level idea

Towards Explicitness

Conclusion O

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Tau-Complexity

Given a polynomial $P(\mathbf{X}) \in \mathbb{Z}[\mathbf{X}]$

Towards Explicitness

Conclusion 0

Given a polynomial $P(X) \in \mathbb{Z}[X]$

 $\tau(P(\mathbf{X}))$: Size of smallest circuit that computes $P(\mathbf{X})$

Towards Explicitness

Conclusion O

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Tau-Complexity

Given a polynomial $P(\mathbf{X}) \in \mathbb{Z}[\mathbf{X}]$

 $\tau(P(\mathbf{X}))$: Size of smallest circuit that computes $P(\mathbf{X})$

Examples

1.
$$\tau(2^{2^k}) = \Theta(k), \qquad \tau(x^n) = \Theta(\log n)$$

Towards Explicitness

Conclusion 0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Tau-Complexity

Given a polynomial $P(X) \in \mathbb{Z}[X]$

 $\tau(P(\mathbf{X}))$: Size of smallest circuit that computes $P(\mathbf{X})$

Examples

1.
$$\tau(2^{2^k}) = \Theta(k), \quad \tau(x^n) = \Theta(\log n)$$

2. $\tau(n!) = ?, \quad \tau(\prod_{i=1}^n (x+i)) = ?$

High level idea

Towards Explicitness

Conclusion O

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Tau-Complexity

Given a polynomial $P(X) \in \mathbb{Z}[X]$

 $\tau(P(\mathbf{X}))$: Size of smallest circuit that computes $P(\mathbf{X})$

Examples

1.
$$\tau(2^{2^k}) = \Theta(k), \quad \tau(x^n) = \Theta(\log n)$$

2. $\tau(n!) = ?, \quad \tau(\prod_{i=1}^n (x+i)) = ?$

We believe these are $\geq \Omega(n)$

Towards Explicitness

Conclusion O

Blum-Shub-Smale Tau-Conjecture:

Towards Explicitness

Conclusion 0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Tau-Complexity

Blum-Shub-Smale Tau-Conjecture: For $P(x) \in \mathbb{Z}[x]$

Towards Explicitness

Conclusion 0

Tau-Complexity

Blum-Shub-Smale Tau-Conjecture: For $P(x) \in \mathbb{Z}[x]$

 $\tau(P(x)) \geq [\# \text{ integer roots of } P(x)]^c$

Towards Explicitness

Conclusion 0

Tau-Complexity

Blum-Shub-Smale Tau-Conjecture: For $P(x) \in \mathbb{Z}[x]$

 $\tau(P(x)) \geq [\# \text{ integer roots of } P(x)]^c$

High level idea

Towards Explicitness

Conclusion O

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Algebraic Complexity

What are the easy instances in this computational model?

High level idea

Towards Explicitness

Conclusion O

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algebraic Complexity

What are the easy instances in this computational model?

• Intuitively polynomials with small size circuits

Towards Explicitness

Conclusion O

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Let $\{P_n\}$ be a family of integer polynomials.

Towards Explicitness

Conclusion O

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Let $\{P_n\}$ be a family of integer polynomials.

We say $P_n \in VP_0$ if

Towards Explicitness

Conclusion O

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Algebraic P (VP_0)

Let $\{P_n\}$ be a family of integer polynomials.

- We say $P_n \in VP_0$ if
 - $\tau(P_n) = n^{O(1)}$

Motivation 0000000000

Towards Explicitness

Conclusion O

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic P (VP_0)

Let $\{P_n\}$ be a family of integer polynomials.

We say $P_n \in VP_0$ if

- $\tau(P_n) = n^{O(1)}$
- $deg(P_n) = n^{O(1)}$

Motivation 0000000000

Towards Explicitness

Conclusion O

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic P (VP_0)

Let $\{P_n\}$ be a family of integer polynomials.

We say $P_n \in VP_0$ if

- $\tau(P_n) = n^{O(1)}$
- $deg(P_n) = n^{O(1)}$

Example

 $1. X_1^n + X_2^n + \dots + X_n^n$

Motivation 0000000000

Towards Explicitness

Conclusion 0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic P (VP_0)

Let $\{P_n\}$ be a family of integer polynomials.

We say $P_n \in VP_0$ if

- $\tau(P_n) = n^{O(1)}$
- $deg(P_n) = n^{O(1)}$

Example

1. $X_1^n + X_2^n + \dots + X_n^n$ 2. $S_{n,k}(X_1, \dots, X_n) := \sum_{S \subseteq [n], |S| = ki \in S} \prod_{X_i} X_i$

Motivation 0000000000

Towards Explicitness

Conclusion 0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic P (VP_0)

Let $\{P_n\}$ be a family of integer polynomials.

We say $P_n \in VP_0$ if

- $\tau(P_n) = n^{O(1)}$
- $deg(P_n) = n^{O(1)}$

Example

1.
$$X_1^n + X_2^n + \dots + X_n^n$$

2. $S_{n,k}(X_1, \dots, X_n) := \sum_{S \subseteq [n], |S| = ki \in S} \prod_{X_i \in S} X_i$
3. $Det_n(\mathbf{X}) := \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) X_{1,\sigma_1} X_{2,\sigma_2} \dots X_{n,\sigma_n}$

High level idea

Towards Explicitness

Conclusion 0

Exponential sum (VNP_0)

$$P_{n,m}(\mathbf{X}) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$$

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへの

High level idea

Towards Explicitness

Conclusion O

Exponential sum (VNP_0)

$$\mathcal{P}_{n,m}(\mathbf{X}) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$$

Circuit size of g is m, $g[\mathbf{X}, \mathbf{Y}] \in \mathbb{Z}[\mathbf{X}, \mathbf{Y}]$.

High level idea

Towards Explicitness

Conclusion O

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Exponential sum (VNP_0)

$$P_{n,m}(\mathbf{X}) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$$

Circuit size of g is m, $g[\mathbf{X}, \mathbf{Y}] \in \mathbb{Z}[\mathbf{X}, \mathbf{Y}]$.

• Note $\tau(P_{n,m}) \leq O(2^n m)$
High level idea

Towards Explicitness

Conclusion O

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Exponential sum (VNP_0)

$$P_{n,m}(\mathbf{X}) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$$

Circuit size of g is m, $g[\mathbf{X}, \mathbf{Y}] \in \mathbb{Z}[\mathbf{X}, \mathbf{Y}]$.

- Note $\tau(P_{n,m}) \leq O(2^n m)$
- $\tau(P_{m,n}) = 2^{o(n)} poly(m)$ possible?

High level idea

Towards Explicitness

Conclusion O

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Exponential sum (VNP_0)

$$P_{n,m}(\mathbf{X}) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$$

Circuit size of g is m, $g[\mathbf{X}, \mathbf{Y}] \in \mathbb{Z}[\mathbf{X}, \mathbf{Y}]$.

- Note $\tau(P_{n,m}) \leq O(2^n m)$
- $\tau(P_{m,n}) = 2^{o(n)} poly(m)$ possible?
- Does *\(\tau\)*-conjecture imply some lower bound?

High level idea

Towards Explicitness

Conclusion O

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Exponential sum (VNP_0)

$$P_{n,m}(\mathbf{X}) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$$

Circuit size of g is m, $g[\mathbf{X}, \mathbf{Y}] \in \mathbb{Z}[\mathbf{X}, \mathbf{Y}]$.

- Note $\tau(P_{n,m}) \leq O(2^n m)$
- $\tau(P_{m,n}) = 2^{o(n)} poly(m)$ possible?
- Does *τ*-conjecture imply some lower bound?
- [Bürgisser'07] showed super-polynomial lowerbound on $P_{m,n}$ assuming τ -conjecture

Towards Explicitness

Conclusion 0

Main result

Conditional Optimal Lower Bound [BBDM'24]

Assuming τ -conjecture \exists a polynomial family $P_{n,m}(X) \in \mathbb{Z}[X]$ of exponential sum which requires $2^{\Omega(n)} poly(m)$ size circuit.

Towards Explicitness

Conclusion O

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Bürgisser's Proof analysis

Assume every $P_{n,m}(\mathbf{X})$ has poly(m) circuit

Towards Explicitness

Conclusion 0

Bürgisser's Proof analysis

Assume every $P_{n,m}(X)$ has poly(m) circuit

Lots of Bad things happen

 $\|$

Towards Explicitness

Conclusion 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bürgisser's Proof analysis

Towards Explicitness

Conclusion 0

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Towards Explicitness

Conclusion 0

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Towards Explicitness

Conclusion 0

Bürgisser's Proof analysis: Observations

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

High level idea ○○●○○○○○○○ Towards Explicitness

Conclusion 0

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

High level idea

Towards Explicitness

Conclusion 0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Towards Explicitness

Conclusion O

But we can improve it!

(≧▶ ≧ ⁄0.00

High level idea

Towards Explicitness

Conclusion O

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

What's the Magic

High level idea

Towards Explicitness

Conclusion 0

What's the Magic

$$\prod_{i=1}^{n} (x+i) = \sum_{k=0}^{n} S_{n,n-k}(1,\ldots,n) x^{k}$$

where

$$S_{n,k}(X_1,\ldots,X_n) = \sum_{S\subseteq [n],|S|=ki\in S} \prod_{X_i} X_i$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

High level idea

Towards Explicitness

Conclusion O

What's the Magic

$$1, 2, \ldots, n, x^k$$

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

High level idea

Towards Explicitness

Conclusion O

What's the Magic

$1 \times \ldots \times k$, $2 \times \ldots \times (k+1)$, \ldots

$$1, 2, \ldots, n, x^k$$

- ▲ロト ▲園ト ▲国ト ▲国ト 三国 - めんぐ

High level idea

Towards Explicitness

Conclusion O

What's the Magic

$$S_{n,k} := 1 \times \cdots \times k + 2 \times \cdots \times (k+1) + \ldots$$

$$1 \times \ldots \times k$$
, $2 \times \ldots \times (k+1)$, \ldots

$$1, 2, \ldots, n, x^k$$

High level idea

Towards Explicitness

Conclusion 0

What's the Magic

$$S_{n,n}x^n + S_{n,n-1}x^{n-1} + \cdots + S_{n,0}$$

$$S_{n,k} := 1 \times \cdots \times k + 2 \times \cdots \times (k+1) + \ldots$$

$$1 \times \ldots \times k$$
, $2 \times \ldots \times (k+1)$, \ldots

$$1, 2, \ldots, n, x^k$$

| ◆ □ ▶ ◆ 酉 ▶ ◆ 亘 ▶ ◆ 国 ■ ● ● ● ●

High level idea

Towards Explicitness

Conclusion 0

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

What's the Magic

$$S_{n,n}x^n + S_{n,n-1}x^{n-1} + \dots + S_{n,0}$$
 3 level

$$S_{n,k} := 1 \times \cdots \times k + 2 \times \cdots \times (k+1) + \cdots$$
 2 level

$$1 \times \ldots \times k$$
, $2 \times \ldots \times (k+1)$, \ldots 1 level

Linear Counting Hierarchy

High level idea

Towards Explicitness

Conclusion 0

Linear Counting Hierarchy

Linear Counting Hierarchy

Given a complexity class K,

High level idea

Towards Explicitness

Conclusion 0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Linear Counting Hierarchy

Linear Counting Hierarchy

Given a complexity class K, we define C_{lin} . K by

High level idea

Towards Explicitness

Conclusion 0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Linear Counting Hierarchy

Linear Counting Hierarchy

Given a complexity class K, we define C_{lin} . K by $A \in C_{lin}$. K if there is some $B \in K$

High level idea

Towards Explicitness

Conclusion 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Linear Counting Hierarchy

Linear Counting Hierarchy

Given a complexity class K, we define C_{lin} . K by $A \in C_{lin}$. K if there is some $B \in K$ and a linear function $\ell : \mathbb{N} \to \mathbb{N}$, $\ell(n) = O(n)$

High level idea

Towards Explicitness

Conclusion 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Linear Counting Hierarchy

Linear Counting Hierarchy

Given a complexity class K, we define $C_{lin}.K$ by $A \in C_{lin}.K$ if there is some $B \in K$ and a linear function $\ell : \mathbb{N} \to \mathbb{N}, \ell(n) = O(n)$ and some polynomial time computable function $f : \{0,1\}^* \to \mathbb{N}$

High level idea

Towards Explicitness

Conclusion 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Linear Counting Hierarchy

Linear Counting Hierarchy

Given a complexity class K, we define $C_{lin}.K$ by $A \in C_{lin}.K$ if there is some $B \in K$ and a linear function $\ell : \mathbb{N} \to \mathbb{N}, \ \ell(n) = O(n)$ and some polynomial time computable function $f : \{0,1\}^* \to \mathbb{N}$ such that,

$$x \in A \iff |\{y \in \{0,1\}^{\ell(|x|)} : \langle x, y \rangle \in B\}| > f(x).$$

High level idea

Towards Explicitness

Conclusion 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Linear Counting Hierarchy

Linear Counting Hierarchy

Given a complexity class K,

High level idea

Towards Explicitness

Conclusion 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Linear Counting Hierarchy

Linear Counting Hierarchy

Given a complexity class K, We define $C-\lim_0 K := K$ and for all $k \in \mathbb{N}$, $C-\lim_{k\to 1} K := C_{\lim}.C-\lim_k K$.

High level idea

Towards Explicitness

Conclusion 0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Linear Counting Hierarchy

Linear Counting Hierarchy

Given a complexity class K, We define $C-lin_0K := K$ and for all $k \in \mathbb{N}$, $C-lin_{k+1}K := C_{lin}.C-lin_kK$. The *linear counting hierarchy* is $CH_{lin}K := \bigcup_{k>0} C-lin_kK$

High level idea

Towards Explicitness

Conclusion O

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Linear Counting Hierarchy (CH_{lin})

Characterization of $\mathsf{CH}_{\mathrm{lin}}$

 $(k+1)^{\text{th}}$ level of CH_{lin} is Exponential sum of k^{th} level

High level idea

Towards Explicitness

Conclusion O

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Linear Counting Hierarchy (CH_{lin})

Characterization of CH_{lin} $(k + 1)^{th}$ level of CH_{lin} is Exponential sum of k^{th} level $(k + 1)^{th}$ level: $\sum_{y \in \{0,1\}^{\ell(n)}} M_n(y)$ where M_n is in k^{th} level

Towards Explicitness

Conclusion O

Linear Counting Hierarchy (CH_{lin})

Characterization of CH_{lin} $(k+1)^{\text{th}}$ level of CH_{lin} is Exponential sum of k^{th} level $(k+1)^{th}$ level: $\sum M_n(y)$ where M_n is in k^{th} level $v \in \{0,1\}^{\ell(n)}$ Hence Exponential sum is EASY \implies CH_{lin} collapses n $\implies \prod (x+i)$ is EASY i=1

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Towards Explicitness

Conclusion 0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Given a variable matrix

Permanent

 $\mathbf{X} := \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{nn} \end{bmatrix}_{n \times n}$

Towards Explicitness

Conclusion 0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Given a variable matrix

Permanent

$$\mathbf{X} := \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{nn} \end{bmatrix}_{n \times n}$$

$$Per_n(\mathbf{X}) := \sum_{\sigma \in S_n} X_{1,\sigma_1} X_{2,\sigma_2} \dots X_{n,\sigma_n}$$

Towards Explicitness

Conclusion 0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Completeness of Permanent

Ryser formula: *Per_n* can be written as Exponential sum (n, n^2)
Conclusion 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Completeness of Permanent

Ryser formula: *Per_n* can be written as Exponential sum (n, n^2) (Recall Exponential sum $(n, m) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$ with $\tau(g) = m$)

Conclusion 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Completeness of Permanent

Ryser formula: *Per_n* can be written as Exponential sum (n, n^2) (Recall Exponential sum $(n, m) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$ with $\tau(g) = m$)

Towards Explicitness $0 \bullet 0$

Conclusion 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Completeness of Permanent

Ryser formula: *Per_n* can be written as Exponential sum (n, n^2) (Recall Exponential sum $(n, m) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$ with $\tau(g) = m$)

[Valiant 79]: Any Exponential sum (n, m) can be written as *Per* of $m^4 \times m^4$ matrix with entries 1, 0, -1, X

 Super Polynomial lower bound on Exponential sum Super Polynomial lower bound on *Per*

Towards Explicitness $0 \bullet 0$

Conclusion 0

Completeness of Permanent

Ryser formula: *Per_n* can be written as Exponential sum (n, n^2) (Recall Exponential sum $(n, m) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$ with $\tau(g) = m$)

- Super Polynomial lower bound on Exponential sum Super Polynomial lower bound on *Per*
- NOT true for Exponential lower bounds

Conclusion 0

Completeness of Permanent

Ryser formula: *Per_n* can be written as Exponential sum (n, n^2) (Recall Exponential sum $(n, m) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$ with $\tau(g) = m$)

- Super Polynomial lower bound on Exponential sum Super Polynomial lower bound on *Per*
- NOT true for Exponential lower bounds
- We gave $2^{n^{1-\varepsilon}}$ lower bound for *Pern*

Conclusion 0

Completeness of Permanent

Ryser formula: *Per_n* can be written as Exponential sum (n, n^2) (Recall Exponential sum $(n, m) = \sum_{\mathbf{y} \in \{0,1\}^n} g(\mathbf{X}, \mathbf{y})$ with $\tau(g) = m$)

- Super Polynomial lower bound on Exponential sum Super Polynomial lower bound on *Per*
- NOT true for Exponential lower bounds
- We gave $2^{n^{1-\varepsilon}}$ lower bound for *Per_n* (Conditionally)

High level idea

Towards Explicitness

Conclusion 0

 We achieved optimal lower bound from tau conjecture for Parameterized Algebraic classes defined in [Bläser and Engles 18] (which are analogous to #W[t] classes)

High level idea

Towards Explicitness

Conclusion O

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- We achieved optimal lower bound from tau conjecture for Parameterized Algebraic classes defined in [Bläser and Engles 18] (which are analogous to #W[t] classes)
- 2. We achieved completeness result for parameterized valiant classes.

High level idea

Towards Explicitness

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Open Problems

- Can we established conditional truly exponential (ie, 2^{Ω(n)}poly(n)) lower bound for Pern? (Unconditional will be better :))
- 2. Can we get Lower Bounds for *NP* from tau-conjecture? (We don't know even super-polynomial bound)