Algorithmic Overview

Highlevel idea: Solving the PIT $_{\rm OOO}$

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Deterministic factorization of constant depth algebraic circuits in subexponential time

Somnath Bhattacharjee (University of Toronto)

Joint work with Mrinal Kumar (TIFR), Varun Ramanathan (TIFR) Ramprasad Saptharishi (TIFR), Shubhangi Saraf (UofT)

(submitted)

Algorithmic Overview

Outline

Highlevel idea: Solving the PIT

Conclusion 00

Motivation

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

Disclaimer: We are rational person

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○ ○

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

Recall High-School Algebra

Factorize the polynomial:

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ → □ ● − の < @

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Recall High-School Algebra

Factorize the polynomial:

• $x^2 + 10x + 16$

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Recall High-School Algebra

Factorize the polynomial:

- $x^2 + 10x + 16$
- $x^4 + 132x^3 17x + 12$

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Recall High-School Algebra

Factorize the polynomial:

- $x^2 + 10x + 16$
- $x^4 + 132x^3 17x + 12$
- $x^3y^2 + 10x^2y^6 + 10x^2 10xy + 19$

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Recall High-School Algebra

Factorize the polynomial:

- $x^2 + 10x + 16$
- $x^4 + 132x^3 17x + 12$
- $x^3y^2 + 10x^2y^6 + 10x^2 10xy + 19$

Fact: Univariate Factorization is Easy [LLL '82] Multivariate not so sure

Algorithmic Overview

Highlevel idea: Solving the PIT $_{\rm OOO}$

Conclusion 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Multivariate Factorization Problem

Input: A multivariate polynomial **Output:** All the irreducible factors with multiplicities

Algorithmic Overview

Highlevel idea: Solving the PIT $_{\rm OOO}$

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Multivariate Factorization Problem

Input: A multivariate polynomial **Output:** All the irreducible factors with multiplicities

- $O(d^n)$ time algorithm for *n* variate *d* degree polynomials

Highlevel idea: Solving the PIT $_{\rm OOO}$

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Multivariate Factorization Problem

Input: A multivariate polynomial **Output:** All the irreducible factors with multiplicities

- $O(d^n)$ time algorithm for *n* variate *d* degree polynomials
- n variate d degree polynomial have d^n possible monomials

Highlevel idea: Solving the PIT $_{\rm OOO}$

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Multivariate Factorization Problem

Input: A multivariate polynomial **Output:** All the irreducible factors with multiplicities

- $O(d^n)$ time algorithm for *n* variate *d* degree polynomials
- n variate d degree polynomial have d^n possible monomials
- Efficient when polynomials are given via monomial representation

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Algebraic circuit

Polynomials with exponentially many monomials can be represented by small bits

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

Algebraic circuit

Polynomials with exponentially many monomials can be represented by small bits

 $(1+x_1)(1+x_2)\dots(1+x_n)$

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

Algebraic circuit

Polynomials with exponentially many monomials can be represented by small bits

$$(1+x_1)(1+x_2)\dots(1+x_n)$$

Hence Algebraic Circuit enters the picture

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• Algebraic Circuits are directed acyclic graphs.

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algebraic Circuits

- Algebraic Circuits are directed acyclic graphs.
- Each internal node: + or × gate.
- Each leaf: constants \mathbb{Q} or variables $\mathbf{X} = \{x_1, \dots, x_n\}$

Highlevel idea: Solving the PIT 000

Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algebraic Circuits

- Algebraic Circuits are directed acyclic graphs.
- Each internal node: + or × gate.
- Each leaf: constants \mathbb{Q} or variables $\mathbf{X} = \{x_1, \dots, x_n\}$
- Computes a polynomial in Q[X]

Highlevel idea: Solving the PIT

Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algebraic Circuits

- Algebraic Circuits are directed acyclic graphs.
- Each internal node: + or × gate.
- Each leaf: constants \mathbb{Q} or variables $\mathbf{X} = \{x_1, \dots, x_n\}$
- Computes a polynomial in Q[X]
- Size: # Edges in the circuit
- Depth: length of shortest paths from root to leaf

Algorithmic Overview

Highlevel idea: Solving the PIT 000

Conclusion 00

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Polynomial Identity Testing (PIT)

Input: An algebraic circuit C (size, degree: poly(n)) **output:** Decide $C \equiv 0$

Highlevel idea: Solving the PIT $_{\rm OOO}$

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Polynomial Identity Testing (PIT)

- **Input:** An algebraic circuit C (size, degree: poly(n)) **output:** Decide $C \equiv 0$
- Randomized one-sided error algorithm in poly(n) time

Highlevel idea: Solving the PIT $_{\rm OOO}$

Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Polynomial Identity Testing (PIT)

- **Input:** An algebraic circuit C (size, degree: poly(n)) **output:** Decide $C \equiv 0$
- Randomized one-sided error algorithm in poly(n) time
- Evaluate at random point

Highlevel idea: Solving the PIT $_{\rm OOO}$

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Polynomial Identity Testing (PIT)

Input: An algebraic circuit C (size, degree: poly(n)) **output:** Decide $C \equiv 0$

- Randomized one-sided error algorithm in poly(n) time
- Evaluate at random point
- *n* many random bits needed

Highlevel idea: Solving the PIT

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic Circuit factorization

Input: An algebraic circuit C (size, degree: poly(n)) **output:** Find all irreducible factors

Highlevel idea: Solving the PIT

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic Circuit factorization

Input: An algebraic circuit C (size, degree: poly(n)) **output:** Find all irreducible factors

• [Kal 86]: Factors of C has circuit size poly(n)

Highlevel idea: Solving the PIT

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic Circuit factorization

Input: An algebraic circuit C (size, degree: poly(n)) **output:** Find all irreducible factors

- [Kal 86]: Factors of C has circuit size poly(n)
- [Kal 86]: *poly(n)* time deterministic algorithm to construct them, given oracle access to PIT

Highlevel idea: Solving the PIT

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic Circuit factorization

Input: An algebraic circuit C (size, degree: poly(n)) **output:** Find all irreducible factors

- [Kal 86]: Factors of C has circuit size poly(n)
- [Kal 86]: *poly(n)* time deterministic algorithm to construct them, given oracle access to PIT

Polynomial Factorization problem has applications in:

- Coding Theory
- Pseudorandomness
- Cryptography
- Graph algorithms

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Constant-Depth Algebraic Circuit factorization

• Randomized Algorithm for Polynomial factorization with *n* many random bits

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Constant-Depth Algebraic Circuit factorization

• Randomized Algorithm for Polynomial factorization with *n* many random bits (Same as PIT)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Randomized Algorithm for Polynomial factorization with *n* many random bits (Same as PIT)
- [LST 21]: sub-exponential PIT for constant depth circuits

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Randomized Algorithm for Polynomial factorization with *n* many random bits (Same as PIT)
- [LST 21]: sub-exponential PIT for constant depth circuits
- Can we factor constant depth circuits in sub-exp?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Randomized Algorithm for Polynomial factorization with *n* many random bits (Same as PIT)
- [LST 21]: sub-exponential PIT for constant depth circuits
- Can we factor constant depth circuits in sub-exp?
- [KRS 23], [DST24], [KRSV 24] made progresses towards this

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Randomized Algorithm for Polynomial factorization with *n* many random bits (Same as PIT)
- [LST 21]: sub-exponential PIT for constant depth circuits
- Can we factor constant depth circuits in sub-exp?
- [KRS 23], [DST24], [KRSV 24] made progresses towards this
- Finally we answered the question: Yes, we can!

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Algorithmic Overview

Highlevel idea: Solving the PIT

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

Conclusion 00

Why so difficult

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Why so difficult

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

Why so difficult

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

Why so difficult

Newton Iteration/ Hensel Lifting destroyes the fun is a sace

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

Somehow we did it

Algorithmic Overview

Highlevel idea: Solving the Pl 000 Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Main Result

Theorem

Given constant $\varepsilon > 0$, we can factor constant-depth circuit $C(x_1, \ldots, x_n)$ of size poly(n) in $\tilde{O}(n^{n^{\varepsilon}})$

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Main Result

Theorem

Given constant $\varepsilon > 0$, we can factor constant-depth circuit $C(x_1, \ldots, x_n)$ of size poly(n) in $\tilde{O}(n^{n^{\varepsilon}})$

Note Brute-force will take $\tilde{O}(n^n)$ time

Algorithmic Overview

Highlevel idea: Solving the PIT 000

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Main Result

Theorem

Given constant $\varepsilon > 0$, we can factor constant-depth circuit $C(x_1, \ldots, x_n)$ of size poly(n) in $\tilde{O}(n^{n^{\varepsilon}})$

Note Brute-force will take $\tilde{O}(n^n)$ time

Key Step: Solve the PIT instances in Kaltofen's Algorithm

Highlevel idea: Solving the PIT 000

Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Power series Factors VS univariate factors

Input $C(x_1, \ldots, x_n, y)$ is monic in y and square-free

Conclusion 00

Power series Factors VS univariate factors

Input $C(x_1, \ldots, x_n, y)$ is monic in y and square-free

Theorem

Hensel: C(X, y) facotrizes completely over $\mathbb{Q}[[X]][y]$

Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Power series Factors VS univariate factors

Input $C(x_1, \ldots, x_n, y)$ is monic in y and square-free

Theorem

Hensel: C(X, y) facotrizes completely over $\mathbb{Q}[[X]][y]$

$$\begin{aligned} \mathcal{C}(\mathbf{X}, y) &= (y - \varphi_1(\mathbf{X})) \dots (y - \varphi_d(\mathbf{X})) \quad (\varphi_i: \text{ power series in } \mathbf{X}) \\ \mathcal{C}(0, y) &= (y - u_1) \dots (y - u_d) \end{aligned}$$

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Power series Factors VS univariate factors

Input $C(x_1, \ldots, x_n, y)$ is monic in y and square-free

Theorem

Hensel: C(X, y) facotrizes completely over $\mathbb{Q}[[X]][y]$

$$\begin{aligned} \mathcal{C}(\mathbf{X}, \mathbf{y}) &= (\mathbf{y} - \varphi_1(\mathbf{X})) \dots (\mathbf{y} - \varphi_d(\mathbf{X})) \quad (\varphi_i: \text{ power series in } \mathbf{X}) \\ \mathcal{C}(\mathbf{0}, \mathbf{y}) &= (\mathbf{y} - u_1) \dots (\mathbf{y} - u_d) \end{aligned}$$

u is the constant in $\varphi(X)$

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$C(\mathbf{X}, y) = (y - \varphi_1(\mathbf{X})) \dots (y - \varphi_d(\mathbf{X}))$$

$$C(0, y) = (y - u_1) \dots (y - u_d)$$

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$C(\mathbf{X}, y) = (y - \varphi_1(\mathbf{X})) \dots (y - \varphi_d(\mathbf{X}))$$

$$C(0, y) = (y - u_1) \dots (y - u_d)$$

•
$$\varphi^{(r)}$$
 : $\leq r$ degree part of φ

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$C(\mathbf{X}, y) = (y - \varphi_1(\mathbf{X})) \dots (y - \varphi_d(\mathbf{X}))$$

$$C(0, y) = (y - u_1) \dots (y - u_d)$$

•
$$arphi^{(r)}:\leq r$$
 degree part of $arphi$

•
$$\varphi^{(0)} = u$$

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Newton Iteration

$$C(\mathbf{X}, y) = (y - \varphi_1(\mathbf{X})) \dots (y - \varphi_d(\mathbf{X}))$$

$$C(0, y) = (y - u_1) \dots (y - u_d)$$

•
$$arphi^{(r)}:\leq r$$
 degree part of $arphi$

•
$$\varphi^{(0)} = u$$

• $\varphi^{(r+1)}$ can be computed from $\varphi^{(0)},\ldots,\varphi^{(r-1)},\varphi^{(r)},\mathcal{C}$

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

$$C(\mathbf{X}, y) = (y - \varphi_1(\mathbf{X})) \dots (y - \varphi_d(\mathbf{X}))$$

$$C(0, y) = (y - u_1) \dots (y - u_d)$$

•
$$arphi^{(r)}:\leq r$$
 degree part of $arphi$

- $\varphi^{(0)} = u$
- $\varphi^{(r+1)}$ can be computed from $\varphi^{(0)},\ldots,\varphi^{(r-1)},\varphi^{(r)},\mathcal{C}$
- $\varphi^{(r)}$ has O(r)-depth circuit

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Kaltofen's Algorithm

Algorithmic Overview 0000

Highlevel idea: Solving the PIT

Conclusion 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Kaltofen's Algorithm

• Factorize $\mathcal{C}(\mathbf{0}, \mathbf{y})$

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Kaltofen's Algorithm

- Factorize $\mathcal{C}(\mathbf{0}, \mathbf{y})$
- from univariate root u_i , compute φ_i

Algorithmic Overview

Highlevel idea: Solving the PIT 000

Conclusion 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Kaltofen's Algorithm

- Factorize $\mathcal{C}(\mathbf{0}, \mathbf{y})$
- from univariate root u_i , compute φ_i

How to find the actual factor?

Algorithmic Overview

Highlevel idea: Solving the PIT 000

Conclusion 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Kaltofen's Algorithm

- Factorize $\mathcal{C}(\mathbf{0}, \mathbf{y})$
- from univariate root u_i , compute φ_i

How to find the actual factor?

- That's where PIT comes in

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Finding a true root

Want to check: φ is a true root?

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finding a true root

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finding a true root

 \tilde{C} is **NOT** constant-depth,

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Finding a true root

 \tilde{C} is **NOT** constant-depth, but *constant-depth like*

Algorithmic Overview

Highlevel idea: Solving the PIT $_{\odot OO}$

Conclusion 00

• So far: we need PIT to do factorization

Algorithmic Overview

Highlevel idea: Solving the PIT •00 Conclusion 00

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- So far: we need PIT to do factorization
- to do the PIT, we need different factorization result

Algorithmic Overview

Highlevel idea: Solving the PIT $\bullet \circ \circ$

Conclusion 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- So far: we need PIT to do factorization
- to do the PIT, we need different factorization result
- Don't get confused :)

Highlevel idea: Solving the PIT

Conclusion 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Constant-depth PIT idea

• [CKS 18]: Low degree roots of constant depth circuit has small constant-depth circuit

Highlevel idea: Solving the PIT 0 = 0

Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Constant-depth PIT idea

- [CKS 18]: Low degree roots of constant depth circuit has small constant-depth circuit
- Let f(z₁,..., z_m) does not have small constant-depth circuit (m < n)

Highlevel idea: Solving the PIT

Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Constant-depth PIT idea

- [CKS 18]: Low degree roots of constant depth circuit has small constant-depth circuit
- Let f(z₁,..., z_m) does not have small constant-depth circuit (m < n)
 C ∘ f(z₁,..., z_m) ≠ 0

Highlevel idea: Solving the PIT O = O

Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Constant-depth PIT idea

- [CKS 18]: Low degree roots of constant depth circuit has small constant-depth circuit
- Let f(z₁,..., z_m) does not have small constant-depth circuit (m < n)

 $\mathcal{C}\circ \boldsymbol{f}(\boldsymbol{z_1},\ldots,\boldsymbol{z_m})\neq \boldsymbol{0}$

Else f is a root of C, has small circuit

Highlevel idea: Solving the PIT 0 = 0

Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Constant-depth PIT idea

- [CKS 18]: Low degree roots of constant depth circuit has small constant-depth circuit
- Let f(z₁,..., z_m) does not have small constant-depth circuit (m < n)

 $\mathcal{C}\circ \boldsymbol{f}(\boldsymbol{z_1},\ldots,\boldsymbol{z_m})\neq 0$

Else f is a root of C, has small circuit

• [LST 21]: Gave an explicit f

Highlevel idea: Solving the PIT 0 = 0

Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Constant-depth PIT idea

- [CKS 18]: Low degree roots of constant depth circuit has small constant-depth circuit
- Let f(z₁,..., z_m) does not have small constant-depth circuit (m < n)

 $\mathcal{C}\circ \boldsymbol{f}(\boldsymbol{z_1},\ldots,\boldsymbol{z_m})\neq 0$

Else f is a root of C, has small circuit

- [LST 21]: Gave an explicit f
- [KI 04]: Gave an explicit variable reduction using such f which preserves non-zeroness.

Algorithmic Overview

Highlevel idea: Solving the PIT

Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Constant-depth-like PIT idea

Key lemma

Low degree roots of constant-depth like circuits also have small constant depth circuit

Highlevel idea: Newton iteration (with quadratic convergence)

Same [KI] variable reduction will work

Algorithmic Overview

Highlevel idea: Solving the PIT $_{\rm OOO}$

Conclusion • 0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- This algorithm is efficient in terms of bit-complexity
- Works for any field with $char > \omega(d)$ or = 0 and univariate factorization is known

Algorithmic Overview

Highlevel idea: Solving the PIT 000

Conclusion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Can we avoid the dependency on the hardness result? i.e., can we use the constant depth PIT result black-box to solve factorization?
- Are constant depth circuits closed under factorization?
- Can we do something better for sparse polynomials?