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Recall High-School Algebra

Factorize the polynomial:

• x2 + 10x + 16

• x4 + 132x3 − 17x + 12

• x3y2 + 10x2y6 + 10x2 − 10xy + 19

Fact: Univariate Factorization is Easy [LLL ’82]
Multivariate not so sure
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Input: A multivariate polynomial
Output: All the irreducible factors with multiplicities

- O(dn) time algorithm for n variate d degree polynomials

- n variate d degree polynomial have dn possible monomials

- Efficient when polynomials are given via monomial representation
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output: Decide C ≡ 0

- Randomized one-sided error algorithm in poly(n) time

- Evaluate at random point
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them, given oracle access to PIT

Polynomial Factorization problem has applications in:
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• Randomized Algorithm for Polynomial factorization with n
many random bits

(Same as PIT)

• [LST 21]: sub-exponential PIT for constant depth circuits

• Can we factor constant depth circuits in sub-exp?

• [KRS 23], [DST24], [KRSV 24] made progresses towards this

• Finally we answered the question: Yes, we can!
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Main Result

Theorem

Given constant ε > 0, we can factor constant-depth circuit
C(x1, . . . , xn) of size poly(n) in Õ(nn

ε
)

Note Brute-force will take Õ(nn) time

Key Step: Solve the PIT instances in Kaltofen’s Algorithm



Motivation Algorithmic Overview Highlevel idea: Solving the PIT Conclusion

Main Result

Theorem

Given constant ε > 0, we can factor constant-depth circuit
C(x1, . . . , xn) of size poly(n) in Õ(nn
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Power series Factors VS univariate factors

Input C(x1, . . . , xn, y) is monic in y and square-free

Theorem

Hensel: C(X, y) facotrizes completely over Q[[X]][y ]

C(X, y) = (y − φ1(X)) . . . (y − φd(X)) (φi : power series in X)

C(0, y) = (y − u1) . . . (y − ud)

u is the constant in φ(X)
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• φ(r) : ≤ r degree part of φ

• φ(0) = u

• φ(r+1) can be computed from φ(0), . . . , φ(r−1), φ(r), C

• φ(r) has O(r)-depth circuit
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Constant-depth PIT idea

• [CKS 18]: Low degree roots of constant depth circuit has
small constant-depth circuit

• Let f (z1, . . . , zm) does not have small constant-depth circuit
(m < n)

C ◦ f (z1, . . . , zm) ̸= 0

Else f is a root of C, has small circuit

• [LST 21]: Gave an explicit f

• [KI 04]: Gave an explicit variable reduction using such f
which preserves non-zeroness.
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Constant-depth-like PIT idea

Key lemma

Low degree roots of constant-depth like circuits also have small
constant depth circuit

Highlevel idea: Newton iteration (with quadratic convergence)

Same [KI] variable reduction will work
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Field dependency

• This algorithm is efficient in terms of bit-complexity

• Works for any field with char > ω(d) or = 0 and univariate
factorization is known
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Open questions

• Can we avoid the dependency on the hardness result? i.e., can
we use the constant depth PIT result black-box to solve
factorization?

• Are constant depth circuits closed under factorization?

• Can we do something better for sparse polynomials?
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